Introduction

The maths work your child is doing at school may look very different to the the work that you remember.

This is because children are encouraged to work mentally, where possible, using personal jottings to help support their thinking. Number lines are one example of this.

Even when children are taught more formal written methods they are only encouraged to use these methods for calculations they cannot solve in their heads.

This booklet is designed to inform you about the progression in calculation methods that we use at Braywood.

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation when the children are ready for them. For many children this will be in the later years of primary school or into secondary school.

Strategies for calculation need to be supported by familiar models and images to reinforce understanding. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the concept.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately. scalculation methods, mental and written. Selection ofwill depend upon the numbers involved. Discussing the efficiency and suitability of different strategies is important.

C Children stage if:

- they are not ready.
- they are not confident.

Mental calculation

Developing confidence and efficiency in mental calculations is a vital part of Maths teaching throughout Key Stage 2.

Regular practice of number facts is important both at school and at home. Any opportunities to practise are very useful, for example through real life situations such as shopping as well as activities such as games.

The children would greatly benefit from knowing key number facts by heart and recalling them instantly (e.g. number bonds to 20, tables).

Multiplication Facts

Remember that truly knowing tables is not the same as just being able to count up in steps of a given number or being able to recite the table.

Really knowing a table means that the children can instantly tell you any fact up to $10 x$. It also means knowing the corresponding division facts.

For example, a child who knows the $3 x$ table well would be able to answer questions like these with very little hesitation:

$$
9 \times 3,7 \text { lots of } 3,3 \times 4,18 \div 3, \text { how many } 3 s \text { in } 24 ?
$$

As the children get more confident they should also have strategies for using known facts to help them work out other facts and also to work with larger numbers or decimals.
e.g. I know 5×3 is 15 , so I can work out $50 \times 3,5 \times 30,150$ $\div 5,500 \times 3,50 \times 30,5 \times 0.3,150 \div 30 \ldots$

A suggested order for learning tables:
$2 x, 10 x, 5 x, 4 x$ (double $2 x$), $3 x, 6 x$ (double $3 x$) $9 x, 8 x, 7 x$

Just a few minutes a day could make a real difference to your child's confidence with number.

Addition

add and count on addition plus more sum total
 altogether increase

Recognise numbers 0 to 10
012345678910

Count reliably up to 10 everyday objects

Find one more than a number

Count in ones and tens

Begin to relate addition to combining two groups of objects

and © makes 5

$3+2=$ 5

Begin to use the + and $=$ signs to record mental calculations in a number sentence

Count along a number line to add numbers together

Know by heart all pairs of numbers with a total of 10 and 20

$15+5=20$

$5+?=10$

0000000000
$10=5+5$
0000000000
$10=1+9$
0000000000
$10=2+8$
(4) $+2=3$

Know that addition can be done in any order

Put the biggest number first and count on

Add two single-digit numbers that bridge 10

Know which digit changes when adding 1s or 10s to any number

15
25
35

Adding two two-digit numbers (without bridging)
Counting in tens and ones
Partitioning and recombining

Adding two two-digit numbers (bridging through tens boundary) Using a number line OR

Using place value cards and place value apparatus to partition numbers and recombine

$$
\begin{gathered}
40+30+8+6 \\
\hline 40+30=70 \\
8+6=14 \\
70+14=84
\end{gathered}
$$

Expanded method

It is important that the children have a good understanding of place value and partitioning using concrete resources and visual images to support calculations. The expanded method enables children to see what happens to numbers in the standard written method.

48 $+36$
 84

Standard written method
The previous stages reinforce what happens to the numbers when they are added together using more formal written methods.

Subtraction

count back take away
fewer subtract minus less
difference between

Begin to count backwards in familiar contexts such as number rhymes or stories

Five fat sausages frying in a pan ...

Ten green bottles hanging on the wall

Continue the count back in ones from any given number

Begin to relate subtraction to ' taking away

Three teddies take away two teddies leaves one teddy

Find one less than a number

Begin to use the - and = signs to record mental calculations in a number sentence

$$
6-4=2
$$

$$
20=12+8
$$

$$
8+12=20
$$

$20-8=12$
$20-12=8$
Know by heart subtraction facts for numbers up to 10 and 20

$$
\begin{array}{rlrl}
6+? & =10 & ?+6 & =10 \\
10-6 & =? & 10-4 & =6
\end{array}
$$

$$
15-7=8
$$

Subtract single digit numbers often bridging through 10

The difference between II and 14 is 3.
$|4-| |=3$
$11+\square=14$

Begin to find the difference by counting up from the smallest number

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Subtract 1 from a two-digit number

Subtract 10 from a
two-digit number
45-10

Partition the number to be subtracted (no exchanging)

$+44$

Partitioning number to be subtracted - with

$$
\begin{aligned}
& 43-20-7 \\
& 43-20=23 \\
& 23-7=16
\end{aligned}
$$

Expanded method

It is important that the children have a good understanding of place value and partitioning using concrete
resources and visual images to support calculations. The expanded method enables children to see what happens to numbers in the standard written method.

NOTE: the correct language is 'exchange' not 'borrow'

Standard written method
The previous stages reinforce what happens to numbers when they are subtracted using more formal written methods. It is important that the children have a good understanding of place value and partitioning.
${ }^{3} 4^{1} 3$

- 27

16

Multiplication

multiplication product once, twice, three times double groups of repeated addition lots of array, row, column multiply times multiple

Count in tens from zero

0	2	4	6	8	10

Count in twos from zero

Count in fives from zero

L00000-00000-00000-00000-00000-00000

Know doubles and corresponding halves
half of 8 is 4
$8+2=4$
double 4 is 8
$4 \times 2=8$

$2+2+2+2$

Understand multiplication as repeated addition

$$
\begin{gathered}
2+2+2+2=8 \\
4 \times 2=8
\end{gathered}
$$

2 multiplied by 4 4 lots of 2

Use place value apparatus to support the multiplication of $U \times T U$ alongside the grid method

40 + $12=$

52

Use place value apparatus to represent the multiplication of $U \times T U$ alongside the grid method

4
10
10

4×23

300
120
30
+12
462

$$
\begin{array}{r}
56 \\
\times \quad 27 \\
\hline 1120 \quad(56 \times 20)
\end{array}
$$

Division

の『○凹○
groups of
lofs of divide divided by
quofient
division
\＆actop
remainder divisioible
Ralfs halve
shome

Count back in twos

half of 8 is 4 $8+2=4$

Know halves
Half of 6 is 3
$1 / 2$ of $6=3$
$15+5=3$
15 shared between 5

Understand division as grouping

$15+3=5$

12 divided into groups of 3 gives 4 groups
$12 \div 3=4$

12 divided into groups
of 4 gives 3 groups
$12 \div 4=3$

Represent 'groups' for division on a number line using apparatus alongside the line

$$
18 \div 6=3
$$

Understand division as repeated subtraction using a vertical line and apparatus to make the links

Children need to see that as the numbers get larger, large chunk subtraction is the more efficient method. Multiples of the divisor (large chunks) are taken away. Multiplication
facts are needed to see the size of the 'chunk'.

What facts do 1 know about the 7 times-table?

		Fact Box
$100 \div 7=14 \times 2$	$518 \div 7=74$	$1 \times 7=7$
100	518	$2 \times 7=14$
- 70 ($10 \times$	$\frac{-350}{7)}(\underline{50} x$	$5 \times 7=35$
$7)^{-10}$		$10 \times 7=70$
30	168	$20 \times 7=140$
$=28 \quad(4 \times)$	$\begin{aligned} & \overline{-140} \quad(\underline{20} \\ & \times) \end{aligned}$	$50 \times 7=350$
2		$100 \times 7=700$

Standard written method
Links directly to large chunk subtraction

When faced with a calculation problem, encourage your child to ask...
*Can I do this in my head?

* Could I do this in my head using drawings or jottings to help me?
* Do I need to use a written method?
* Should I use a calculator? (only if is necessary with the numbers involved)

Also help your child to estimate and then check the answer.
Encourage them to ask...
Is the answer sensible?

